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Abstract 

The purpose of this study is to optimize the selection of 

prophylactic cardioverter defibrillator implantation 

candidates. Currently, the main criterion for implantation 

is a low Left Ventricular Ejection Fraction (LVEF) whose 

specificity is relatively poor.  

We designed two classifiers aimed to predict, from 

long term ECG recordings (Holter), whether a low-LVEF 

patient is likely or not to undergo ventricular arrhythmia 

in the next six months. One classifier is a single hidden 

layer neural network whose variables are the most 

relevant features extracted from Holter recordings, and 

the other classifier has a structure that capitalizes on the 

physiological decomposition of the arrhythmogenic 

factors into three disjoint groups: the myocardial 

substrate, the triggers and the autonomic nervous system 

(ANS). In this ad hoc network, the features were assigned 

to each group; one neural network classifier per group 

was designed and its complexity was optimized. The 

outputs of the classifiers were fed to a single neuron that 

provided the required probability estimate. The latter was 

thresholded for final discrimination 

A dataset composed of 186 pre-implantation 30-mn 

Holter recordings of patients equipped with an 

implantable cardioverter defibrillator (ICD) in primary 

prevention was used in order to design and test this 

classifier. 44 out of 186 patients underwent at least one 

treated ventricular arrhythmia during the six-month 

follow-up period. Performances of the designed classifier 

were evaluated using a cross-test strategy that consists in 

splitting the database into several combinations of a 

training set and a test set. The average arrhythmia 

prediction performances of the ad-hoc classifier are NPV 

= 77% ± 13% and PPV = 31% ± 19% (Negative 

Predictive Value ± std, Positive Predictive Value ± std). 

According to our study, improving prophylactic ICD-

implantation candidate selection by automatic 

classification from ECG features may be possible, but the 

availability of a sizable dataset appears to be essential to 

decrease the number of False Negatives. 

1. Introduction 

Sudden Cardiac Death (SCD) is an unexpected death 

caused by loss of heart function that occurs in a short time 

period (generally within one hour of symptom onset) in a 

person with known or unknown cardiac disease. Most 

SCDs are caused by a fast, erratic and disorganized 

propagation of impulses in the ventricles, named 

ventricular fibrillation. When it occurs, the heart is unable 

to pump blood anymore and death will occur within 

minutes, if left untreated by electrical shock(s). 

Randomized clinical trials (MADIT II [1], SCD-HeFT 

[2]) have highlighted the benefits of prophylactic ICD 

implantations for SCD high-risk patients (post-

Myocardial Infarction (MI) patients and Heart Failure 

(HF) patients with reduced LVEF).  

However, according to [3], 81% of the patients have 

not received any therapy (appropriate or not) from their 

ICD over the 5-year follow-up period in SCD-HeFT. 

Beyond the economic issue caused by seemingly 

unnecessary implantations, are the health issues due to the 

peri- and postoperative complications. Thus, the selection 

of prophylactic ICD-implantation candidates must be 

improved. 

In this study we propose the construction of a specific 

nonlinear classifier that relies on prior knowledge of the 

arrythmogenic factors, and uses the most relevant 

descriptors obtained from long-term ECG records 

(Holter) to identify patients who will undergo ventricular 

fibrillation in the next 6 months, hence are actually in 

need of a prophylactic ICD implantation. 

 

2. Materials and Methods 

2.1. Population study 

One hundred and eighty-six patients (age 67±11 yrs, 

163 males) with history of myocardial infarction and/or 

with heart failure and left ventricular dysfunctions (LVEF 

< 30%) have undergone a 30-mn Holter recording before 



being equipped with an ICD in primary prevention. 

During a six-month follow-up period, 44 out of 186 

patients underwent at least one ventricular arrhythmia 

requiring a therapy deliverance from the ICD. 

We divided the database into two groups: the positive 

group is composed of the 44 records that led to treated 

ventricular event in the next six months, and the negative 

group composed of the other 142 records. 

 

2.2. Feature grouping and selection 

Most of the known rhythmological and morphological 

parameters available from a Holter recording (such as the 

descriptors of the Heart Rate Variability, of the QT 

segment, of the QRS complex, etc.) are computed for 

each record of the database, resulting in a set of more than 

seventy candidate features. 

These parameters describe different components which 

are implied in the arrhythmia genesis, so that they can be 

grouped by arrhythmogenic factors. 

 

2.2.1 Feature grouping 

The principal electrophysiological mechanism 

involved in the ventricular tachyarrhythmia genesis arises 

from the myocardial substrate, which refers to areas of 

fibrosis and ventricular dilatation. However, the substrate 

alone is not capable of originating tachyarrhythmia. The 

participation of trigger elements (the most common one is 

premature ventricular contraction (PVC)) is usually 

necessary. Additionally, the autonomic nervous system 

(ANS) interacts with the substrate and the triggers to 

cause electrical instability and leading to fatal 

arrhythmias, such as VF. Coumel schematized the 

interaction in the form of a triangle, each angle of which 

refers to one of the three factors (the myocardial 

substrate, the trigger elements and the autonomic nervous 

system) involved in the tachyarrhythmia genesis [4]. 

The structure of the second classifier that we have 

designed takes that prior physiological knowledge into 

account by processing separately the features pertaining 

to the three factors. Thus, the morphological features of 

the QRS complex, of the ST segment and of the T-wave, 

which describe the myocardial tissue state and the 

electrical conductivity condition, are grouped in the 

substrate hub; the occurrences of PVC and other rhythmic 

events are grouped in the triggers hub and the descriptors 

of the Heart Rate Variability and of the Heart Rate 

Turbulence, which characterize the autonomic regulation 

of the heart rate, are grouped in the ANS hub. 

Nevertheless, due to the small amount of data 

compared to the large number of candidate features, any 

statistical model might be overly sensitive to noise or 

variance in the training data, and fail to estimate the 

underlying distribution from which the data were drawn. 

In other words, the model might overfit the training data. 

Overfitting usually leads to poor generalization 

capabilities of the classifier, i.e. to loss of accuracy on test 

(out-of-sample) data. In order to limit overfitting, a 

strategy of feature selection is proposed in the next 

section.  

 

2.2.2 Feature selection 

Within each hub, the most relevant features for a 

classification are selected by the random probe method 

[5]. This method ranks candidate features in order of 

decreasing relevance to predict ventricular arrhythmia, 

using Gram-Schmidt orthogonalisation. The originality of 

the random probe method lies in the addition of a pseudo-

random variable (the probe) to the set of candidate 

features; its realizations are ranked just as all other 

candidate features. This results in an estimation of the 

risk ρ of selecting a candidate feature although it might 

rank worse than an irrelevant variable, as a function of the 

number of selected candidate features. 

 

2.3. Classifier design 

We propose nonlinear classifiers that output an 

estimation of the probability for the patient to have a 

serious ventricular arrhythmia during the next six months.  

These nonlinear classifiers are neural networks, all 

neurons of which have a sigmoid transfer function and the 

inputs of which are the features described in the previous 

section. In order to estimate the probability for a patient, 

given the inputs, to belong to the positive group [6], the 

samples were assigned the label 1 if the patients belonged 

to the positive group (i.e. had a treated ventricular 

arrhythmia), and 0 otherwise. Training was performed by 

gradient descent [7] followed by a BFGS [8] optimization 

of the least squares cost function with weight decay term 

[9]. The class imbalance problem was alleviated by 

multiplicating the records of arrhythmic patients in the 

training database. 

The optimal complexity was found by K-fold cross-

validation, whereby the training/validation set is split into 

K homogenous and disjoint subsets, trainings are 

performed on K-1 subsets, and the mean squared error of 

the resulting models on the examples of the last 

(“validation”) subset are computed; the procedure is 

iterated K times, so that each example is in a validation 

subset once and only once. The cross-validation score is 

the average of the K smallest validation mean squared 

errors. The complexity of the models that result in the 

smallest cross-validation score is selected. 

After completion of complexity selection, the 

performances of the classifier and their variability are 

estimated as follows: the whole database is split into K’ 

homogenous and disjoint subsets, classifiers are trained 



on K’-1 subsets, the model that has the smallest training 

error is selected, and is applied to the data of the 

remaining (“estimation”) subset; this procedure is iterated 

K’ times in order to use each example once and only once 

in the estimation set. The K’ classification performances 

are averaged and their standard deviation is computed. 

 

2.3.1. Conventional neural network 

classifier 

As a reference, a single hidden layer neural network 

classifier was designed, the inputs of which were the 

eighteen features selected as described in section 2.2.2 

(Figure 1). 

 
Figure 1. Single hidden layer neural network classifier. 

 

2.3.2. Ad hoc neural network classifier 

In order to capitalize on prior knowledge, an ad hoc 

network was designed by grouping the variables as 

described in the section 2.2.1. Each group of factors 

undergoes a distinct nonlinear transformation, whose 

results are fed to a non-linear neuron that provides an 

estimate of the risk pertaining to the patient (Figure 2). 

 

 
Figure 2. Classifier composed of three subnetworks 

linked to an output nonlinear neuron. 

 

The first step was to build one neural network per 

arrhythmogenic factor, with one hidden layer and one 

output neuron. The optimal complexity for each of these 

three subnetworks is found by cross-validation. 

Finally, the output of each subnetwork is fed to a non-

linear neuron. The overall network is trained, the 

parameters of the subnetworks, obtained in the previous 

step, are taken as initial values, and the classifier that has 

the best performance on the training/validation set is 

selected. 

3. Results 

The most relevant features (with a risk ρ ≤ 10%) for 

discrimination between patients likely or not to undergo 

ventricular tachyarrhythmia in the next 6 months are 

listed, per hub, in Table 1. 

 

Table 1. Most relevant features for classification. 

Myocardial 

Substrate 

QRS residuum † 

QRS-T angle † 

T-Wave residuum † 

QT end † 

QT apex † 

QT slope † 

ST elevation / depression † 

Autonomic 

Nervous 

System 

Minimum heart rate † 

Mean RR interval † 

SDANN 

Poincaré Plot Analysis SD2 

Heart rate variability index ‡ 

Turbulence Onset 

Trigger 

elements 

Ventricular bigeminy 

Ventricular trigeminy 

Non-sustained ventricular tachycardia 

Premature Atrial Contraction (PAC) 

Couple of PAC 

† averaged over the signal duration 

‡ heart rate variability index is the percentage of averaged 

differences between two successive complexes. 

 

These features were available for 107 patients out of 

186. 

The selected structure for the conventional single 

hidden layer neural network had one hidden neuron in its 

hidden layer. 

Concerning the ad hoc network, with three hubs of 

inputs, it was found that the most appropriate nonlinear 

transformation, for each subnetwork, was performed by a 

single neuron with sigmoid output. In other words, the 

subnetworks shown on Figure 1 had no hidden neuron, 

i.e. performed a linear separation between the classes. 

The performance of the conventional classifier, 

estimated as described in section 2.3 with K’ = 10 

resulted in an average reduction of the ICD-implantation 

of 52% (std. 19%). The averaged negative predictive 

value (NPV) assessed on cross-test was 68% (std. 13%); 

it is the ratio of the number of patients who are correctly 

classified as not requiring an ICD-implantation to the 

number of patients who were classified as not requiring it. 

The averaged positive predictive value (PPV), which is 

the proportion of patients rightly classified as needing an 

ICD-implantation among the patients classified as 

requiring it., was 25% (std. 20%). 

Likewise, the estimated performances obtained by the 

ad hoc classifier were an averaged reduction of the ICD-



implantations of 59% (std. 15%), with an average NPV of 

77% (std. 13%) and a PPV of 31% (std. 19%). 

In other words, let us build, for each classifier, an 

overall confusion matrix by summing the ten matrices 

produced in the performance estimation procedure. With 

this “theoretical” classifier, based on the performances of 

the conventional classifier, only 52 out of the 107 patients 

would be implanted, resulting in a 51.4% reduction of the 

number of implantations. Among patients for whom 

implantation is recommended by the classifier, 13 

actually require it, resulting in a PPV of 25%, and among 

the 55 patients for whom implantation is rejected, 39 do 

not require it, resulting in a NPV of 71% (Table 2). 

In the same situation, a “theoretical” classifier based 

on the performances of the ad hoc classifier would 

recommend a reduction of ICD implantations by 58.9% 

Among the 44 patients for whom an implantation is 

recommended, 14 really need it, thus the PPV is equal to 

32%. Among the 63 patients for whom the implantation is 

considered as unrequired, 48 do actually not need it, 

which reflects a NPV of 76% (Table 3). 

 

Table 2. Performances of the conventional classifier. 

 

Overall confusion  

matrix  

“Theoretical” 

classifier 

Designed 

classifiers 

39 39 NPV = 71% NPV = 68±13% 

16 13 PPV = 25% PPV = 25±20% 

Correctly classified patients 5.1 ± 2.0 

 

Table 3. Performances of the ad hoc classifier. 

 

Overall confusion  

matrix  

“Theoretical” 

classifier 

Designed 

classifiers 

48 30 NPV = 76% NPV = 77±13% 

15 14 PPV = 32% PPV = 31±19% 

Correctly classified patients 6.2 ± 1.5 * 

* conventional vs ad hoc classifiers: p-value = 0.0547 

 

4.  Discussion 

In this study, the objective was to reduce the rate of 

ICD-implantation with more than 90% of negative 

predictive value and at least 20% of positive predictive 

value. The reduction of ICD implantations made possible 

by both of the designed classifiers is noteworthy and the 

desired PPV is obtained in both cases. Furthermore, in 

this experimental case, the contribution of the 

decomposition of the inputs according to their 

arrhythmogenic participation provides a slight 

improvement (p-value = 0.0547) but is not statistically 

significant. Nonetheless, the aim in NPV remains out of 

reach considering the limitations we have to face. 

The database contained few examples and was 

unbalanced, making the learning of the training set 

features difficult, regardless the complexity of the 

network.  

Another limitation of the database is the length of the 

recordings, which was only 30 minutes, at any time in the 

daytime; it was thus impossible to study some time 

periods that would be of interest, such as the hour before 

awakening. Furthermore, it has been impossible to 

calculate some descriptors in the usual way (for example, 

some descriptors of the HRV are commonly averaged on 

24 hours) and a temporal analysis of the descriptor 

variations was unfeasible.  

Therefore, repeating the same process of classifier 

construction on a sizable database of 24-hr pre-

implantation Holter recordings of patients equipped with 

an ICD in primary prevention seems to be mandatory. 

 

5.  Conclusion 

Improving prophylactic ICD-implantation candidate 

selection by automatic classification from ECG features 

may be possible. Nevertheless, to reach this aim, getting 

more suitable and larger databases is essential to decrease 

the number of False Negatives, hence increase the 

negative predictive value.  
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